Unit-I: Sets and Functions
Unit-II: Algebra
Unit-III: Coordinate Geometry
Unit-IV: Calculus
Unit-V: Mathematical Reasoning
Unit-VI: Statistics and Probability

Applications of Binomial Theorem

\to De Moivre’s formula

(\cos x +i \sin x)^n=\cos nx +i \sin nx

\to Series for e

e=\lim_{n \to \infty} (1+\dfrac{1}{n})^n

Some General Binomial Expansion:

\to (x+y)^0=1

 \to (x+y)^1=x+y

 \to (x+y)^2=x^2+2xy+y^2

 \to (x+y)^3=x^3+3x^2y+3xy^2+y^3

\to (x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4

 \to (x+y)^5=x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5

Scroll to Top